top of page

ANSWER YOUR QUESTIONS

  • What is robotic neuro-rehabilitation?
    It is the treatment, focused from physiotherapy, of any person who suffers a pathology or injury to the nervous system, and using different technologies as main tools, such as exoskeletons or virtual reality. Thanks to the technology applied in the treatments, we reach recovery thresholds that could not be reached in any other way only with conventional physiotherapy. How many people does it take to make a patient walk? How to move a hand that has no movement of its own when you want to move only with desire as a tool? These examples clearly show that without the help of technology (exoskeletons, etc.) you could not train in this way.
  • Why should I incorporate an exoskeleton in my clinic?
    The use of an exoskeleton can provide more effective results in less time than conventional therapies.
  • How long do treatments last at Movex Clinics?
    There is no generalized specific time for everyone, since personal assessments are made to each patient who comes, and once the clinical picture of the person has been seen, and the type of injury they have assessed, a individualized treatment for that user. In any case, it must be taken into account that recovery or neurological training usually takes a long period of evolution. Our way of working seeks personalization so much that no two patients repeat the same pattern.
  • Is traditional physiotherapy combined in your treatments?
    Taking into account the objectives to be achieved in each patient, different therapies are contemplated, and of course, traditional physiotherapy is one of them, as long as it adds to the rehabilitation of the person. Thanks to years of study and work on the application of traditional physiotherapy as a necessary complement to exoskeletons, it has been possible to maximize the objectives achieved by exoskeletons. Also in the traditional physiotherapy environment, technologies such as virtual reality and augmented reality are applied, which again help to maximize the effects of this.
  • Can exoskeletons be used if I have stiff joints?
    The use of the exoskeleton should be evaluated by the physical therapist to determine the best treatment strategy to restore the patient's mobility.
  • Can a damaged brain be rehabilitated?
    If there is a brain lesion, we cannot remove or erase it, but we can generate new neural pathways that adapt to that damage, being able to regain lost movements or abilities. If the damage is so severe that new movements cannot be achieved, the preserved ones can be adapted, in order to have functional strategies within the existing mobility limitation. You can always train or improve some area of physical rehabilitation, but you cannot regenerate neurons, so to speak, if the receptionist of a clinic is not in her position one day, another worker performs the function of taking the phone and, even if it doesn't do as well, the necessary work will be done. The same happens with neurons.
  • I want to recover from an injury caused by neurological damage, where do I start?
    After an injury, whatever its nature, good advice is important, since generally there are many situations encompassed in a person, of which it is unknown that they can be worked on, if one does not work in said specialty. That is why I believe that the best advice is to request an evaluation from professionals specialized in the sector, so that they can advise and guide a possible therapy in a constant and continuous manner, taking into account the evolution of the person, as well as their needs. In other words, it is a priority to carry out an exhaustive assessment of the scope of the neurological lesion, the affected areas and, after determining the different areas of action necessary, propose a treatment delimited in time. To do this, you must go to a center specialized in neurological physiotherapy and provide as much information as possible to help determine the real possibilities of recovery.
  • Can exoskeletons be used with hemiplegia?
    Yes, the exoskeleton can be independently adjusted in terms of range of motion and level of assistance, allowing the gait pattern/strength to be customized for each patient.
  • Robotic neuro-rehabilitation treatment for patients affected by stroke
    The main objective, after a stroke, is to recover as much functionality as possible in the affected side of the body, since the symptoms generally occur on one side of the body. After the first 6 months, the brain poses a recovery scenario where the brain relearns more easily. After two years, despite an incorrect belief, very good results are still achieved after more exhaustive and complex training.
  • Robotic neuro-rehabilitation treatment in patients with ALS
    The main purpose of amyotrophic lateral sclerosis (ALS), or any neurodegenerative disease, is to preserve the person's functionality and quality of life as much as possible. It is essential to work on the autonomy of the patient through repetitive training with exoskeletons, and/or slow down the loss of capacities affected by the diagnosis as much as possible, with different physiotherapy techniques. We must not forget that when we are faced with a neurodegenerative disease, our job is to help stop this degeneration that the disease will end up causing. The image on the beach of a father or mother with their child making a mountain of sand that the sea carries away and is replaced at full speed before the next wave is very visual. The aim is to keep the wall up for as long as possible.
  • How the Movex method works in patients with Spinal Cord Injury
    In the face of a spinal cord injury, we distinguish between a complete or an incomplete one. In the first case, an attempt is made to achieve, through the different teams at the center and with traditional physiotherapy, a training of the functions that are maintained after the injury; and attempts are made to achieve the greatest possible changes that can occur in the functionality of the person, in order to gain greater autonomy, and thus avoid complications associated with the injury. Thanks to training with exoskeletons, it is possible to improve muscle mass, the intestinal tract, prevent osteoporosis, not to mention the psychological benefits of seeing yourself standing and walking. In the second case, how to obtain favorable changes in the nervous system, managing to recover movements lost after the damage, we try to promote the maximum possible neuromuscular development through the exoskeletons of the center, and with traditional physiotherapy combining all possible therapies within our reach so that the person can advance with the highest quality and speed possible in their rehabilitation. In this area, the results are usually the most surprising, since practically everyone responds very well to these treatments.
  • How can we help patients with neurodegenerative diseases?
    Unfortunately, these pathologies still have no cure discovered by science; but from physiotherapy, we try to preserve the maximum quality of life and autonomy of the person, accompanying and studying their needs in each phase of the disease, to guarantee the best possible mobility strategies. Of course, to achieve this, we use the technology of the center; that is, exoskeletons, virtual reality or similar, and more typical and well-known physiotherapy techniques. Again, the example of the father with the son making sand walls in front of the sea can give an approximate idea of how we work in this area. It is true that there are usually profits, but they are understood as temporary gifts.
  • ¿Cuáles son los criterios de inclusión y exclusión?
    Criterios de inclusión para pacientes destinatarios: Accidentes cerebrovasculares: Edad entre 18 y 80 años. Primer accidente cerebrovascular isquémico. Hemiplejia/hemiparesia causada por un ictus en estado subagudo o crónico. Lesión unilateral, cortical o subcortical. Altura entre 1.55 y 1.95 m, peso inferior a 100 kg. Buen control del tronco y musculatura en los miembros inferiores. Rango de movimiento suficiente en cadera, rodilla y tobillo. Capacidad de caminar 10 metros y mantenerse de pie. Habilidades cognitivas para participar en el tratamiento. Lesiones neurodegenerativas: Edad entre 18 y 65 años. Altura entre 155 y 195 cm, peso inferior a 100 kg. Suficiente fuerza para el manejo de elementos de soporte. Espasticidad en los miembros inferiores no mayor a 2 según la escala de Ashworth. Lesiones medulares: Lesión medular incompleta motora. Suficiente fuerza en las extremidades inferiores. Capacidad de mantenerse de pie con o sin soporte y caminar de forma independiente o con ayuda de un dispositivo de movilidad. Capacidad para mantener la estabilidad del tronco. Capacidad cognitiva para seguir instrucciones. Criterios de exclusión: Problemas espaciales y apraxia en la evaluación neuropsicológica. Contraindicaciones para caminar y mantenerse de pie. Problemas de comprensión en la comunicación. Distonía/movimientos involuntarios. Desórdenes neurológicos conjuntos. Dolor intenso. Enfermedades que causen intolerancia al ejercicio. Tratamiento médico que afecte al estado de alerta. Síntomas conjuntos como fiebre, infección, enfermedades metabólicas y discapacidades cardíacas. Hipotensión ortostática sintomática. Cualquier condición que pueda afectar la seguridad y el control del producto. Recuerda que es fundamental que estos criterios sean evaluados por profesionales médicos capacitados.
  • ¿Cuáles son los ajustes posibles con el exoesqueleto Hank?
    El exoesqueleto Hank ofrece una variedad de ajustes personalizables para adaptarse a las necesidades y preferencias individuales de cada usuario. A continuación, se detallan los ajustes principales: Rango de movilidad de las articulaciones: El exoesqueleto Hank permite ajustar el rango de movilidad de cada una de las articulaciones, lo que permite adaptar el dispositivo a las capacidades y limitaciones de cada usuario. Velocidad de la marcha: Con Hank, es posible ajustar la velocidad de la marcha en una escala del 1 al 10. El nivel 1 corresponde a una velocidad de 0,4 Km/h, mientras que el nivel 10 alcanza una velocidad de 4 Km/h. Esto permite a los usuarios caminar a un ritmo que se adapte a sus necesidades y preferencias. Nivel de asistencia: El exoesqueleto Hank ofrece un ajuste de nivel de asistencia que va del 0 al 100%. Este ajuste permite controlar la cantidad de apoyo proporcionado por el exoesqueleto durante el movimiento, brindando a los usuarios mayor autonomía y control sobre su experiencia de caminar con el dispositivo. Patrón de marcha: Hank ofrece la opción de elegir entre un patrón de marcha fijo o adaptativo. El patrón de marcha fijo permite mantener un ritmo constante independientemente de la velocidad, mientras que el patrón de marcha adaptativo ajusta automáticamente la cadencia en función de la velocidad de la marcha. Esto proporciona una experiencia de caminar más natural y fluida. Modo paso a paso: Además, el exoesqueleto Hank cuenta con un modo paso a paso que permite ajustar el tiempo entre cada paso. Este ajuste es útil para adaptarse a diferentes preferencias y necesidades de cada usuario al caminar con el dispositivo. Comienzo con pie derecho o izquierdo: Hank ofrece la opción de iniciar la marcha con el pie derecho o izquierdo, lo que permite una mayor personalización y comodidad para los usuarios al comenzar su movimiento. Adaptabilidad: El exoesqueleto Hank puede adaptarse a usuarios con una altura que oscile entre 1.50 y 1.95 metros. Esto garantiza que el dispositivo se ajuste adecuadamente a la estatura de cada usuario, brindando comodidad y eficacia en el uso. Capacidad de carga: Hank está diseñado para soportar hasta 100 kg de peso. Esta capacidad de carga permite a una amplia gama de usuarios beneficiarse de las ventajas del exoesqueleto, independientemente de su peso corporal. En resumen, el exoesqueleto Hank proporciona una amplia gama de ajustes que incluyen el rango de movilidad de las articulaciones, la velocidad de la marcha, el nivel de asistencia, el patrón de marcha, el modo paso a paso, el inicio con el pie derecho o izquierdo, la adaptabilidad a diferentes alturas y la capacidad de carga de hasta 100 kg. Estos ajustes y características permiten que Hank se adapte de manera precisa a las necesidades y características de cada usuario, proporcionando una experiencia de caminar cómoda y eficiente.
  • How does an exoskeleton work?
    Each exoskeleton has its technical and specific characteristics; but in general, what is attempted through exoskeletons is to re-educate the lost or altered movement by applying external prostheses that execute that movement and take the patient with them to reproduce it, either in the arms or legs, repeating the same pattern over and over again until that rote learning is achieved. In other words, our walking exoskeleton, for example, generates movement in the hips, knees and ankles in a certain pattern, to correct the way the person with neurological damage walks, being able to repeat an indefinite number of times until re-education of the movement. This is a great advance, since the human being is incapable of repeating exactly the same movement for several repetitions. Brain plasticity will gradually internalize this movement and begin to reproduce it from the beginning of the movement.
  • How much does an exoskeleton weigh?
    HANK: 14 kg without battery. BELK: 1.5 Kg each leg, 2 kg backpack including battery.
  • How long does the exoskeleton battery last?
    HANK: The battery lasts 4 hours of continuous use. The equipment is delivered with 2 batteries, which can be replaced in less than 10 seconds. The average time to fully charge the battery is 1h 30 min, guaranteeing a complete work shift. BELK: The battery lasts 8 hours of continuous use. The equipment is delivered with 2 batteries, which can be replaced in less than 10 seconds. The average time to fully charge the battery is 1h.
  • What is the training process to use an exoskeleton?
    At Gogoa we offer a 4-day training program to become an exoskeleton "pilot", and be able to use it with patients with different pathologies.
bottom of page